Tetrahedron Letters, Vol.28, No.20, pp 2269-2272, 1987 0040-4039/87 \$3.00 + .00 Printed in Great Britain Pergamon Journals Ltd.

LIQUID CRYSTALS II. THE TAIL DESIGN VIA β -OXYGEN ATOM MODIFICATION FOR THE REMARKABLY ENHANCED STABILITY OF HEXAKIS (ALKANOYLOXY) TRIPHENYLENE MESOPHASE

Iwao Tabushi*, Kazuo Yamamura, Yukihiro Okada Department of Synthetic Chemistry, Kyoto University Sakyo-ku, Kyoto 606, Japan

A new family of liquid crystalline compounds, 2,3,6,7,10,11-hexakis(3-oxaalkanoyloxy)triphenylene, was found to exhibit very wide mesomorphic temperature ranges, providing a promising design principle for mesogen construction, β -oxa modification of tail alkyls.

A new type of liquid crystals, the discotic mesophase, attracts strong attentions because of unique mesophase structure, polymorphism/reversed mesophase order, or possible application to low dimensional organic conductors. For the most part, such mesogens have a large size of flat core --- benzene, bipyrane, truxene, phthalocyanine or triphenylene, and these cores are linked to hydrocarbon tails via ester or ether linkages¹⁻³. Here, we report a new promising tail design principle for mesogen construction, " β -oxa" modification of tail alkyls. The principle afforded much enhanced mesophase stability for triphenylene hexaester, and is also applicable to other systems such as benzene hexaesters⁴ or viologens⁵, as preliminarily reported by the authors.

Now we wish to report a new family of liquid crystalline compounds, 2,3,-6,7,10,11-hexakis(3-oxaalkanoyloxy)triphenylene, $1-C_n \cdot O^3$ (n=4,6,8,10,12,14, see Chart 1), among which the β -oxygen atom effect was seen particularly effective for $1-C_4 \cdot O^3$ and $1-C_6 \cdot O^3$ to exhibit the large mesomorphic temperature range (ΔT_M) of 52° and 154°, respectively, in a sharp contrast to $\Delta T_M = 0°$ for the corresponding hydrocarbon compounds, $1-C_4$ and $1-C_6$ bearing no β -O atom (Chart 1). The largest ΔT_M of 241° was achieved⁶ for 3-oxadecanoate ester, $1-C_{10} \cdot O^3$.

m,

Chart 1			
	$1 - c_n \cdot o^3$ (T=-OCOCH ₂ O-C _{n-3} H _{2n-5})	1-C _n (T=-OCOC _{n-1} H _{2n-1})	
n	∆t _m (°C)	∆T _M (°C) (Ref 1b)	
4	52	0	
6	154	0	
8	207	60	
10	241	50.5	
12	203	41	
14	172		

The present hexaesters of triphenylene, $1-c_n \cdot o^3$, was prepared by a treatment of 2,3,6,7,10,11-hexahydroxytriphenylene⁷ with the corresponding 3-oxaacyl chloride. In 90 MHz (or 60 MHz) ¹H-NMR spectra, absorptions due to the triphenylene protons and CH, protons α to -OCO- were observed as singlets at δ (from TMS in CDCl₃) 7.8-7.9 and 4.3-4.4 ppm, respectively (Table I). The 1 H absorptions due to other protons together with IR, FD-MS (see Table I) or 13 C-NMR spectra were also satisfactory, supporting the structures of $1-c_{n}^{2} \cdot o_{n}^{3}$. The range of mesophase stability was determined by DSC thermal analysis⁸ and polarizing microscopy.

	Hexakis $(3-oxaalkanoyloxy)$ triphenylene, $1-C_n$. 03		
	¹ H-NMR (CDC1 ₃ ,TMS), δ(ppm) ^a	$v_{MAX}(cm^{-1})$	FD-MS(m/e)
$1-c_4 \cdot o^3$	3.6(s,18H), 4.3(s,12H), 7.8(s,6H)	1762, 1110 ^b	
$1 - c_{6} \cdot 0^{3}$	1.0(t,18H), 1.7(m,12H), 3.7(t,12H) 4.4(s,12H), 7.8(s,6H)	1765, 1110 ^C	925 (M+H ⁺)
1-c ₈ .0 ³	0.94(t,18H), 1.1-1.9(m,36H), 3.7(t, 12H), 4.4(s,12H), 7.9(s,6H)	1770, 1102 ^C	
1-c ₁₀ .03	0.89(t,18H), 1.1-1.9(m,60H), 3.7(t, 12H), 4.4(s,12H), 7.9(s,6H)	1760, 1105 [°]	1261(M+H ⁺)
1-c ₁₂ .0 ³	0.89(t,18H), 1.0-1.9(m,84H), 3.7(t, 12H), 4.4(s,12H), 7.9(s,6H)	1770, 1105 ^C	
1-c ₁₄ .0 ³	0.88(t,18H), 1.0-1.9(m,108H), 3.7(t, 12H), 4.4(s,12H), 7.8(s,6H)	1780, 1120 ^C	
a) 90 MH	z^{1} H-NMR except 60 MHz for $1-C_4 \cdot 0^3$ and	1-c ₆ .0 ³ . b)	KBr pellet

Table I. ¹H-NMR Absorptions, Selected IR and FD-MS Data of 2,3,6,7,10,11-

 $1-c_{10} \cdot o^3$, the most mesomorphic member of the present hexaester family, exhibited the crystal-mesophase transition temperature, T_{C-M} , at -14° and the mesophase-isotropic phase transition temperature, T_{M-T} , at 227° (see also DSC

Fig 1. The DSC trace of $1-C_{10} \cdot 0^3$.

c) Neat liquid film

trace, Fig 1)⁹. Apparently β -O atom depresses T_{C-M} and raises T_{M-I} considerably, since the corresponding hydrocarbon ester, 1^{-C}_{10} , exhibits the mesophase in the 75-125.5° temperature range^{1b}. The C-M transition at the lower temperature (-14°) of $1^{-C}_{10} \cdot O^3$ occurs with an enthalpy change, ΔH_{C-M} , of 0.98 kcal/ mol which is distinctly small, ca. 1/12-fold smaller than the reported ΔH_{C-M} (11.3 kcal/mol overall)^{1b} for the hydrocarbon compound, 1^{-C}_{10} . More interesting, however, is the fact that ΔH_{C-M} is of a comparable magnitude to the M-I transition enthalpy, ΔH_{M-I} , of 1.5 kcal/mol (Fig 1) for the oxo compound $(1^{-C}_{10} \cdot O^3)$, since this similarity indicates that $1^{-C}_{10} \cdot O^3$ is, energetically, just between crystalline and isotropic states. This offers a striking contrast with 1^{-C}_{10} , the mesophase of which is more like isotropic liquid as judged by the very large ΔH_{C-M} (loc. cit.) and the very small ΔH_{M-I} (0.697 kcal/mol)^{1b}.

To investigate such the oxygen atom effect in more detail, O atom was introduced at α -, β -, γ - position of $1-C_8$ by keeping the acyl tail length at eight, or in a side pendant position as in α -CH(OMe). The mesomorphic temperature ranges observed were $59 \sim 60^{\circ}(\alpha-0)$, $30 \sim 237^{\circ}(\beta-0)$, $-22 \sim 83^{\circ}(\gamma-0)$, and $-14 \sim 85^{\circ}(\alpha-CH(OMe))$, respectively, strongly indicating that the introduction of O atom in the main chain or side group depressed T_{C-M} (66°) of $1-C_8$. This T_{C-M} depression probably comes from the close similarity between crystal and mesophase structures, as judged from ΔH_{C-M} of 1.0 (α -O), 1.9 (β -O), 0.3 (γ -O), or 0.05 kcal/mol (α -CH(OMe)), all of which are considerably smaller than the reported ΔH_{C-M} (4.7 kcal/mol overall)^{1b} for the hydrocarbon ester, $1-C_8$.

Except β -O, these O atoms were found also depressing of T_{M-I} , viz., from 126° for $1-C_8$ to 60°(α -O), 83°(γ -O), 85°(α -CH(OMe)), respectively. Only β -O atom further stabilized $1-C_8 \cdot O^3$ mesophase relative to the isotropic phase, raising T_{M-I} (237° for $1-C_8 \cdot O^3$). A possible interpretation for this stabilization is the enhanced mesophase orderness (probably due to the enhanced intermolecular interaction in the mesophase), based on the observa-

Fig 2. The C-M transition entropy(\bigcirc) and M-I transition entropy(\bigcirc) of 1-c_n.03 Open circles and squares refer to \triangle S for 1-C_n (Ref 1b). tion that ΔS_{M-T} for $1-C_n \cdot 0^3$ is appreciably larger than ΔS_{M-T} for $1-C_n$, and the trend holds throughout the $1-C_n \cdot 0^3$ series (n=8-14) (see Fig 2b).

A conclusion then may be drawn that the present β -O atom effect operates in two ways, viz., depressing ${\rm T}_{\rm C-M}$ and raising ${\rm T}_{\rm M-I}$, on triphenylene hexaester. These two effects show the tendency depicted in Fig 3, demonstrating the first successful tail design via β -oxygen atom modification for the remarkably enhanced stability of hexakis(alkanoyloxy)triphenylene mesophase.

Fig 3. Dependence of $T_{C-M}(\bigcirc)$ and $T_{M-I}(\blacksquare)$ of $1-C_n \cdot O^3$ on the tail length n. Inserted points which are connected by broken lines are T_{C-M} and T_{M-I} for $1-C_n$ (Ref 1b). T_{M-M} is indicated by \blacktriangle .

Acknowlegment. This work was supported by Japan Ministry of Education, Science, and Culture, Grant-in-Aid for Specially Promoted Research for I.T., No.61065003.

REFERENCES AND NOTES

- 1)(a) S.Chandrasekhar, B.K.Sadashiva, K.A.Suresh, Pramana, 9, 471 (1977)
 - (b) C.Destrade, M.C.Mondon, J.Malthete, J.Phys., 40, C3, 17 (1979)
 - (c) N.H.Tinh, P.Foucher, C.Destrade, Mol.Cryst.Liq.Cryst., 111, 277 (1984)
- 2) C.Destrade, M.C.Mondon-Bernaud, W.H.Tinh, Mol.Cryst.Liq.Cryst., 49, 169 (1979)
- 3) (a) C.Piechocki, J.Simon, A.Skoukious, D.Guillon, P.Weber, J.Amer.Chem.Soc., 104, 5245 (1982)

- (b) A.M.Godquin-Giroud, J.Phys.Lett., 45, L-387 (1984)
 4) I.Tabushi, K.Yamamura, Y.Okada, submitted to J.Org.Chem.
 5) I.Tabushi, K.Yamamura, K.Kominami, J.Amer.Chem.Soc., 108, 6409 (1986)
- 6) The magnitude of the largest ΔT_M observed is comparable to ΔT_M of 247° for octakis (dodecyloxymethyl)phthalocyanine-Cu, the most mesomorphic discotic ever reported (Ref 3a).
- 7) O.C.Musgrave, C.J.Webster, J.Chem.Soc., C, 1397 (1971)
- 8) The DSC data(Fig 1,2) were well reproducible in repeated DSC scanning.
- 9) The peak at 6° remained after further, careful recrystallizations of spectroscopically pure sample. It is tentatively assigned to a M_1-M_2 transition.

(Received in Japan 10 February 1987)